If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2=13
We move all terms to the left:
z^2-(13)=0
a = 1; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·1·(-13)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{13}}{2*1}=\frac{0-2\sqrt{13}}{2} =-\frac{2\sqrt{13}}{2} =-\sqrt{13} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{13}}{2*1}=\frac{0+2\sqrt{13}}{2} =\frac{2\sqrt{13}}{2} =\sqrt{13} $
| 2(3x-2)-5(2x+1)=x-4 | | 16-2n=3n-20 | | 2n-16=20-3n | | 2n^2=420 | | 6=(1-3x) | | x-3x^2+1-3x=0 | | 5n-6=3+2n | | -3x*x=0 | | 10b-6=8b+3 | | 3x=5×-40 | | 15x-6=36x-9 | | 6n-5=3n+2 | | 39x−6=45x−9 | | 6n-5=2n+3 | | 12b-3=6b+8 | | x4-9x+20=0 | | 12b-6=6b+4 | | d×3=12 | | x2-12=4x | | x²-12=4x | | 4x-3=-12x-15 | | -6.6r=-19.14 | | 3x=5×+10 | | 16+8y+y^2=25 | | x+4.5=-5.3 | | 60/x-3=6 | | x/5=2.13 | | (6x+28)+(11x-37)+(6x+28)+(11x-37)=360 | | (6x+28)+(11x-37)=90 | | (11x-37)+(6x+28)=180 | | -2+4x=4+26x | | (6x+28)+(11x-37)=180 |